Technology: Chinese scientists claim synthetic match to NR
Frankfurt, Germany – A team of Chinese scientists have developed a synthetic equivalent to vulcanised natural rubber (NR), according to an 11-Dec press release by the Society of German Chemists.
The researchers, led by Yun-Xiang Xu and Guangsu Huang from Sichuan University, Chengdu, revealed the development in a recent edition of technical journal Angewandte Chemie.
The structure employs short protein chains on the side chains of the polymer backbone to ensure a stable physical crosslinking and provide a "self-reinforcing effect" under load.
Although synthetic polyisoprene rubbers have the same main-chain structure as natural rubber, vulcanised NR is much stronger and more durable.
This, according to the scientists, is due to the “spontaneous self-reinforcement" effect of vulcanised NR - a reversible stiffening of the material under mechanical stress, referred to as strain crystallisation.
Here, special polar components at the ends of the polymer chains – non-covalently bonded proteins and phospholipids – play a role in producing this high-resilience characteristic.
Functionalisation of the chain ends can also improve the mechanical properties of the synthetic rubbers. Until now, however, suitable synthesis methods were not available to achieve this.
To address this challenge, the Chinese scientists employed an established catalyst system based on rare-earths elements and special stabilised precursors.
This approach, they reported, has yielded very long polymer chains from isoprene units, with a high proportion cis-linkages within the backbone and a variety of side chains with hydroxyl groups at the end.
Inspired by natural rubber, the idea was to link biomolecules here, which are responsible for a physical crosslinking of the polymer chains, said the release.
The team also modeled the high strength of spider silk: choosing short protein chains (oligopeptides) from four molecules of the amino acid alanine.
The oligo-alanines form accordion-like β-sheet structures that make up the hard constituents of silk and give it strength and thermal stability, according to to report.
As the peptide and the polyisoprene chains are immiscible, the peptide chains preferentially aggregate together. This effect is said to provide the desired physical crosslinking of the polyisoprene chains.
According to the scientific report, the process “greatly” increases the strength and toughness of the new synthetic rubbers without compromising the elasticity of the material.
Furthermore, it said, the synthetic rubber shows a significant self-reinforcement through strain crystallisation, with features corresponding to those of vulcanised natural rubber.
This article is only available to subscribers - subscribe today
Subscribe for unlimited access. A subscription to European Rubber Journal includes:
- Every issue of European Rubber Journal (6 issues) including Special Reports & Maps.
- Unlimited access to ERJ articles online
- Daily email newsletter – the latest news direct to your inbox
- Access to the ERJ online archive